

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2023

CC9-PHYSICS

ELEMENTS OF MODERN PHYSICS

Time Allotted: 2 Hours

Full Marks: 40

 $1 \times 5 = 5$

The figures in the margin indicate full marks. All symbols have their usual significance.

GROUP-A

1. Answer any *five* questions from the following:

- (a) Explain population inversion in lasers.
- (b) Give the quantum operators for energy and position.
- (c) Write two differences between β -rays and α -rays.
- (d) What do you mean by work-function?
- (e) Prove that $[\hat{x}, \hat{p}_x] = -i\hbar$.
- (f) Give two differences between nuclear reaction and radioactive disintegration.
- (g) Write down the semi-empirical mass formula.
- (h) Write two sources of stellar energy.

GROUP-B

		Answer any <i>three</i> questions from the following	$5 \times 3 = 15$
2.	(a)	Can two independent laser beams produce an interference pattern? Explain.	2
	(b)	A laser beam of wavelength 720 nm has a coherence time of 4×10^5 sec. Deduce the order of magnitude of its coherence length and spectral half width.	3
3.	(a)	What was the significance of Davisson-Germer experiment?	2
	(b)	Derive a relation between group and phase velocities.	3
4.	(a)	Prove $[\hat{x}, P_x^n] = in\hbar \hat{p}_x^{(n-1)}$.	3
	(b)	What do you mean by the eigenvalue of a dynamical variable?	2

5. (a) What do you mean by nuclear force? What are their characteristics?	1+1							
(b) Explain which is the most stable among ${}_{2}^{6}$ He , ${}_{2}^{6}$ Be and ${}_{3}^{6}$ Li.	3							
6. (a) Find the angular momentum of the electron in the ground state and first excited state of hydrogen atom.	3							
(b) Give two differences between Compton and Photo-electric effect.	2							
GROUP-C								
Answer any two questions from the following								
7. (a) Find the normalized wave-function for a particle trapped in one-dimentional box	4							

of infinite height. (b) Show that the De-Broglie wavelength associated with a particle of rest mass m_0 3 and kinetic energy *E* is given by $\lambda = \frac{hc}{(E^2 + 2Em_0c^2)^{\frac{1}{2}}}$.

3

2

2

4

3

3

4

2

3

1

(c) How can you explain the continuous nature of β -ray spectrum?

8.	(a)	Why only	α -particles	are	emitted	by	radioactive	nucleii	while	protons	and	3
	neutrons are not?											
	(b) How much energy in MeV is required to remove one neutron from ${}_{8}O^{16}$?										3	

- (c) Explain the phenomenon of nuclear fission.
- (d) Calculate using shell model, the spin and parity of each nucleus N^{15} , O^{16} .
- 9. (a) Explain the concept of a four level Laser system with an example.
 - (b) Obtain the expression for the probability current density for the wavefunction $\psi = \frac{e^{ikr}}{r}.$
 - (c) Energy required to remove an electron from sodium is 2.3 eV. Does Sodium show photo electric effect for orange light with wavelength 6800 Å?
- 10.(a) Explain why electron can not reside in the nucleus, with proper calculations.
 - (b) A nucleus emits an α -particle followed by two β -particles. Show that the final nucleus is an isotope of the original one.
 - (c) The wave-function of a metal is 2.2 eV. Calculate the threshold wavelength and maximum kinetic energy of the photoelectron when light of wavelength 2000 Å is incident on it.
 - (d) Explain stimulated emissions in Lasers.

____×____